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Utterance Verification-based Dysarthric Speech
Intelligibility Assessment using Phonetic Posterior
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Julian Fritsch and Mathew Magimai.-Doss

Abstract—In the literature, the task of dysarthric speech intel-
ligibility assessment has been approached through development
of different low-level feature representations, subspace model-
ing, phone confidence estimation or measurement of automatic
speech recognition system accuracy. This paper proposes a novel
approach where the intelligibility is estimated as the percentage of
correct words uttered by a speaker with dysarthria by matching
and verifying utterances of the speaker with dysarthria against
control speakers’ utterances in phone posterior feature space and
broad phonetic posterior feature space. Experimental validation
of the proposed approach on the UA-Speech database, with
posterior feature estimators trained on the data from auxiliary
domain and language, obtained a best Pearson’s correlation
coefficient (r) of 0.950 and Spearman’s correlation coefficient (ρ)
of 0.957. Furthermore, replacing control speakers’ speech with
speech synthesized by a neural text-to-speech system obtained a
best r of 0.937 and ρ of 0.961.

Index Terms—Dysarthric speech, Objective intelligibility As-
sessment, Posterior features, Utterance verification.

I. INTRODUCTION

Dysarthria is a motor speech disorder resulting from damage
to either or both the central and peripheral nervous systems [1],
[2]. Such a damage can affect the speech production at various
levels such as respiration, phonation, resonance, articulation,
speaking rate, and prosody, leading to reduction in speech
intelligibility. Assessment of speech intelligibility helps in
characterizing the level of severity and in guiding speech
therapy, treatment and intervention [1]. Currently, dysarthric
speech intelligibility assessment is carried out through sub-
jective listening tests, which is costly (in terms of both time
and money); is susceptible to listener biases; and can be
irreproducible. Objective speech intelligibility assessment is
a potential alternative.

Previous work on objective dysarthric speech intelligibility
assessment can be broadly grouped as:

i) assessment without explicit use of linguistic information:
Legendre et al. proposed prediction of intelligibility using
amplitude modulation spectra [3]. In [4], Falk et al. inves-
tigated modeling of short- and long-term temporal dynamics
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information. In [5], inspired from the notion that intelligibil-
ity can be expressed as a linear combination of perceptual
dimensions phonation, nasality, articulation and prosody [6],
a signal processing-based composite measure was proposed.
Janbakshi et al. proposed the P-ESTOI measure [7], which
builds upon the speech intelligibility measures STOI [8] (short-
time objective intelligibility) and extended-STOI [9]. Differ-
ent subspace-based methods such as iVector-based [10], use
of spectral subspaces extracted through principal component
analysis or approximate joint diagonalization [11] have been
also proposed. The subspace methods assess intelligibility by
measuring the deviation or distance between the control speech
and dysarthric speech in the trained subspace.

ii) assessment based on explicit use of linguistic informa-
tion: Kim et al. [12] proposed an approach where automatic
speech recognition (ASR) with a confusion network is used to
obtain ”phone-to canonical-phone” mappings. These mappings
are summarized in per-speaker histograms for a defined set of
words and are then used to estimate an intelligibility score
for each speaker. Middag et al. [13] proposed an approach
where the dysarthric speech is aligned using an ASR system to
obtain phone probabilities or phonological feature probabilities
based confidences. These confidences are then accumulated
over a specified groups of phones for each speaker to esti-
mate intelligibility score. Finally, ASR system accuracy based
intelligibility assessment has been also investigated [10], [14].

In recent years, phone posterior feature based speech assess-
ment approaches have emerged, where sequences of phone
posterior probabilities obtained from reference speech and
test speech are matched for (a) speech codec and transmitted
speech intelligibility assessment [15], (b) synthesized speech
intelligibility assessment [15], and (c) degree of nativeness
assessment [16]. Inspired by these works, the present paper
develops an objective dysarthric speech intelligibility assess-
ment approach. In this approach, the speech intelligibility of
speakers with dysarthria is measured as percentage correct
words spoken from a given set of words. The correctness of
each word spoken is determined by verifying the utterance
of a speaker with dysarthria against a set of control speak-
ers’ utterances by matching the respective posterior feature
sequences, and taking a majority voting. We validate the
proposed approach on the UA-Speech corpus.

The remainder of the paper is organized as follows. Sec-
tion II presents the proposed approach. Section III presents
the experimental setup. Section IV presents the results and
analysis. Finally, we conclude the paper in Section V.
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II. PROPOSED APPROACH

In a clinical setting, dysarthric speech intelligibility can be
assessed through an isolated word pronunciation test, where
a speaker with dysarthria pronounces a set of isolated words,
and the speech intelligibility is measured as percentage of cor-
rectly identified words by human listeners [1], [17], [18]. The
proposed approach goes along that direction, where percentage
correct words spoken by a speaker with dysarthria is estimated
to assess speech intelligibility.

Let w ∈ {1, · · ·W} denote a word index w from a set
of words containing W words. Let k ∈ {1, · · ·K} denote a
control speaker index k from the set of K control speakers.
Let Zw denote the speech produced for word w by the speaker
with dysarthria. Let Yw

k denote the speech produced for
word w by the control speaker k. Based on this information,
Algorithm 1 presents the proposed objective intelligibility
score IntScore estimation method.

Algorithm 1: Objective intelligibility score estimation

Set w=1, #CorrectWords=0;
while w ≤ W do

Set k=1, vote count vw=0;
while k ≤ K do

Match Zw and Yw
k to obtain a score Lw;

Perform hypothesis testing based on Lw to
verify whether Zw and Yw

k are the same word
or not;

if same word then
vw = vw + 1;

end
end
if vw ≥ K/2 then

#CorrectWords = #CorrectWords+ 1;
end

end
Result: IntScore = #CorrectWords

W × 100%

In the remainder of the section, we first present how Zw and
Yw
k are matched to obtain match score Lw and then present

how hypothesis testing is performed to decide whether Zw

and Yw
k are the same word or not.

A. Posterior-feature based matching of Zw and Yw
k

The match between Zw and Yw
k is obtained by match-

ing posterior feature vector sequences (zw1 , · · · zwn , · · · zwN )
and (yw

1 , · · ·yw
m, · · ·yw

Mk
), where N denotes the number

of frames in an utterance of a speaker with dysarthria of
word w, Mk denotes the number of frames in the kth

control speaker’s utterance of word w, and posterior fea-
ture vectors zwn = [zwn,1, · · · zwn,d, · · · , zwn,D]T and yw

m =

[ywm,1, · · · ywm,d, · · · , ywm,D]T are D dimensional phones or
broad phonetic classes posterior probabilities estimated using
neural network(s) (see Section III-B), ∀n ∈ {1, · · ·N} and
∀m ∈ {1, · · ·Mk}.

The match between the two posterior feature sequences
is obtained using dynamic time warping [19]. The dynamic
programming recursion is as:

Lw(m,n) = l(yw
m, z

w
n ) + min[Lw(m− 1, n),

Lw(m,n− 1), Lw(m− 1, n− 1)] , (1)

where, l(yw
m, z

w
n ) is the local match score computed as sym-

metric Kullback-Leibler divergence between yw
m and zwn ,

l(yw
m, z

w
n )=

1

2
· [

D∑
d=1

ywm,d log
ywm,d

zwn,d
+

D∑
d=1

zwn,d log
zwn,d
ywm,d

], (2)

and Lw(m,n) is the accumulated match score at (m,n).
The dynamic programming results in a global match score
Lw(Mk, N), which is then normalized by the path length.

B. Utterance verification based on Lw(Mk, N)

It can be argued that when the dysarthric speech is unintel-
ligible, the uttered word tends to map to a word other than the
target word. As a result, the listeners are not able to identify
the target word. This could be formulated as an utterance
verification problem, i.e. testing the hypothesis whether the
speech utterances Yw

k and Zw correspond to the same word
or not. A similar understanding has been recently applied to
assess intelligibility of text-to-speech synthesis systems [20].
In the literature, it is well known that comparison of probabil-
ity distributions using KL-divergence and other measures such
as Bhattacharya distance is equivalent to hypothesis testing
and yields an estimate of log-likelihood ratio [21], [22]. The
global match score Lw(Mk, N) is a sum of KL-divergence
between phone or broad phonetic class posterior probability
distributions on the best matching path normalized by the path
length. So, Lw(Mk, N) can be interpreted as an estimate of
log-likelihood ratio of the test utterance being same as the
reference utterance, through which utterance verification can
be carried out. In order to do that, we need to apply a threshold
on Lw(Mk, N). As illustrated in Figure 1, the threshold is
determined in the following manner:

1) Creating same word utterance pairs from the control
speakers data, matching them and obtaining a distribution
of global match score for the same word hypothesis;

2) Creating different word utterance pairs from the control
speakers data, matching them and obtaining a distribution
of global match score for NOT the same word hypothesis;
and

3) determining the threshold at the intersection of the two
distributions, referred to as Thrinter or at the center of
the two means of the histogram, referred to as Thrcen.

0 1 2 3 4 5 6 7 8
Lw(Mk, N)

0.00

0.02

0.04
Same-word
Different-word
Thrinter

Thrcen

Fig. 1. Distribution of same and different-word pair scores Lw(Mk, N)
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III. EXPERIMENTAL SETUP

This section presents the experimental setup. In our experi-
ments, we have used different off-the-shelf neural networks for
posterior feature estimation and to synthesize control speech.
Due to space limitations, their description in Sections III-B and
III-C is kept short, the reader is referred to the supplementary
material.

A. UA-Speech Database

We validated the proposed approach on the UA-Speech
database [23]. The database consists of 15 English speakers
with cerebral palsy (11 males, 4 females) and 13 healthy
speakers (9 males, 4 females). Each impaired and control
speaker has uttered 765 isolated words in total: 155 isolated
words repeated 3 times and 300 isolated words spoken only
once. In the database, each subject’s intelligibility score has
been obtained by having five naive listeners (native speakers
of American English) transcribe the isolated words and then
calculating the average number of correct transcriptions. The
subjective intelligibility scores of the patients range from 2%
to 95%. Similar to the previous works [7], [11], we use the
5th channel recordings for our experiments. An energy-based
voice activity detection using Praat ( [24]) was used to extract
the speech segments.

B. Posterior feature estimators

We investigated two different categories of posterior feature
spaces: (a) phone posterior space and (b) broad phonetic or
articulatory feature (AF) space to understand the posterior
feature space that helps in characterizing dysarthric speech
intelligibility well. To estimate posterior feature vectors zwn
and yw

m corresponding to phone classes or broad phonetic
classes, a posterior feature estimator is needed. As collect-
ing large amounts of data in a domain-dependent manner
in a clinical environment is hardly possible, inspired from
the previous works on speech intelligibility [15] and degree
of non-native assessment [16], we investigated the use of
posterior feature estimators trained on auxiliary domain data
and auxiliary language.

Phone space: We used an off-the-shelf single hidden
layer multilayer perceptron trained on 232 hours Switch-
board conversational telephone speech to classify 44 context-
independent phonemes and silence class, i.e. D = 45 [25].

AF space: There are different ways to represent phonemes
as articulatory features such as binary features [26] or multi-
valued features [27]. In this work, we conducted studies with
binary features and multi-valued AF representations:
(a) AFbinary: We used Phonet toolkit [28], which consists of
18 recurrent neural network-based binary AF classifiers trained
on 17 hours of clean FM podcasts in Mexican Spanish. We
extracted 18 AF binary probability vectors and used them as
the posterior feature, i.e. D = 18× 2.
(b) AFmulti−manner: We used an off-the-shelf CNN-based
estimator trained on AMI corpus with raw waveform as input
to classify 9 multi-valued manner of articulation AF [29], i.e.
D = 9.

C. Validation studies
We obtained the thresholds Thrinter and Thrcen for each

of the posterior spaces using all data from the 13 control
speakers, as described earlier in Section II-B, and conducted
three studies:

1) all-control: All control speakers in the UA-Speech
database, i.e. K = 13, are used to obtain the objective
score.

2) single-synthetic-control: Using a female voice speech
synthesized by Tacotron2 [30] (an off-the-shelf neural
text-to-speech system) for each of the words in the UA-
Speech database as control speech. In this case, K = 1.

3) vary-control: Varying K from 13 to 1 and randomly
selecting K control speaker(s) to obtain the objective
score.

In all the studies, we used Pearson’s correlation coefficient,
r, and Spearman’s correlation coefficient, ρ, as the evaluation
measures, as done in the previous studies.

IV. RESULTS AND ANALYSIS

all-control: Table I shows the results obtained for the case
where all K = 13 control speakers’ speech is employed for
IntScore estimation. Under each of the correlation values,
a p-value testing the hypothesis that the two sets of data
are uncorrelated is also provided. Besides that, the table also
presents the performances using other objective intelligibility
assessment approaches proposed and studied on the same
UA-Speech database in the literature. A brief overview of
these approaches can be found in Section I. It is worth
mentioning that the performance for composite measure [5],
discriminant analysis [31], temporal dynamics [4] iVectors and
word accuracy-based [10] studies are optimistic, as a part
of the speaker dysarthria’s data has been used to create the
models for intelligibility assessment.

It can be observed that the proposed approach consistently
yields high Pearson’s and Spearman’s correlation coefficients
for all the posterior feature spaces. Also, all the results are
statistically significant. It is interesting to note that the choice
of threshold is not influencing the performance of the proposed
approach. Furthermore, the proposed approach consistently
performs comparably to or better than the baseline approaches.

single-synthetic-control: Table II presents the results ob-
tained with the use of synthetic speech as reference. When
compared to all-control case, we can observe that both for
Phone space and AFmulti−manner we obtain comparable r
and ρ, while slightly inferior r for AFbinary. These results
are promising. This indicates that in the proposed approach
synthetic speech could be used as the control speech.

vary-control: Fig. 2 presents the results of the study, where
the number of control speakers K is varied from 13 to 1. It
can be observed that the performance is pretty stable when
K is reduced, even when selecting one single control speaker
for intelligibility assessment, except for AFmulti−manner. This
indicates that, in the proposed approach, the number of control
speakers can be reduced considerably. This observation is also
supported by the single-synthetic-control study.

The proposed approach estimates an intelligibility score
IntScore, i.e. percentage of words correct for each speaker
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TABLE I
PEARSON’S CORRELATION (r) AND SPEARMAN’S CORRELATION (ρ)

BETWEEN SUBJECTIVE AND OBJECTIVE INTELLIGIBILITY FOR
ALL-CONTROL STUDY. p-VALUES ARE PRESENTED IN ITALICS FONT.

Posterior feature space Thrcen Thrinter

r ρ r ρ
Phone .939 .939 .950 .957

3.94e-7 2.31e-7 5.52e-8 2.29e-8
AFbinary .918 .885 .922 .885

1.88e-6 1.13e-5 1.27e-6 1.32e-5
AFmulti−manner .922 .910 .917 .894

1.01e-6 2.42e-6 1.43e-6 6.82e-6
Baseline systems
P− ESTOI [7] .94 .94
Composite measure [5] .94 .89
Discriminant analysis [31] .92 -
Spectral subspace [11] -.83 -.88
Temporal dynamics [4] .87 .85
iVectors [10] .91 -
Word accuracy − based [10] .89 -

TABLE II
PEARSON’S CORRELATION (r) AND SPEARMAN’S CORRELATION (ρ)

BETWEEN SUBJECTIVE AND OBJECTIVE INTELLIGIBILITY FOR
SINGLE-SYNTHETIC-CONTROL STUDY. p-VALUES ARE PRESENTED IN

ITALICS FONT.

Posterior feature space Thrcen Thrinter

r ρ r ρ
Phone .924 .942 .931 .961

1.44e-7 8.08e-7 1.14e-8 4.46e-7
AFbinary 0.827 .893 .822 .885

1.40e-4 7.23e-6 1.68e-4 1.13e-5
AFmulti−manner .937 .906 .930 .912

2.40e-7 3.09e-6 4.78e-7 2.13e-6
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Fig. 2. Pearson’s correlation and Spearman’s correlation when the number
of control speakers K is varied from 13 to 1. Synth. refers to the case of
single-synthetic-control.

with dysarthria, which can be directly related to the sub-
jective listening score, without any intermediary mapping
or regression. Fig. 3 shows the Pearson’s correlation plot
overlaid for the different systems, along with root mean square
error (RMSE) between listener percentage word accuracy
and the IntScore (presented in the legends); each marker
represents one speaker. It can be observed that phone space
and AFmulti−manner space are predicting well high intelli-

gibility regions, while AFbinary is predicting comparatively
well the low intelligibility regions. As a consequence, although
AFbinary is not the best in terms of r and ρ, it yields the best
RMSE of 16.9%. We observe this trend even in the case of
synthetic control speech, denoted as Synth AFbinary. This is
promising as we have not used any dysarthric speech data
to build any part of the assessment system. In the previous
studies, on the same data set, RMSE ranging from 12% to
18.6% have been reported with the use of dysarthric speech
data to build the intelligibility prediction models [5], [10].
Overall, the analysis indicates that IntScore estimation needs
to be further improved for low intelligibility regions to take
advantage of its interpretability. This is a part of our on-going
work.
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Fig. 3. Pearson’s correlation plot obtained from proposed intelligibility
assessment systems. Synth refers to the case of single-synthetic-control.

V. CONCLUSIONS

We proposed an approach to assess dysarthric speech intel-
ligibility by matching and verifying the utterances of speakers
with dysarthria of a set of words against a set of control
speakers’ utterances of those words in phone or broad phonetic
posterior feature spaces. Our investigations on the UA-Speech
corpus using posterior feature estimators trained on auxiliary
data and language showed that the proposed approach obtains
high correlation with subjective intelligibility scores for both
phone and broad-phonetic posterior feature spaces. Our inves-
tigations also demonstrated that the proposed approach obtains
high correlation even when the control speakers’ speech is
replaced by speech synthesized by a neural TTS system or the
number of control speakers is considerably reduced. Our future
work will focus on extending the proposed approach in the
framework of KL-HMM [32] to better explain the variations
in dysarthric speech in phone and AF spaces.
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VI. SUPPLEMENTARY MATERIAL

A. Phonetic Posterior Feature Representations

In this section, we provide further details about the different
posterior feature estimators

Phone space consists of 45 dimensional context-
independent phoneme posterior probabilities estimated by an
off-the-shelf multilayer perceptron (MLP). The MLP takes
as input 39-dimensional perceptual linear predictive cepstral
features with (frame size is 25 ms, frame shift 10 ms) a nine
frame temporal context (i.e. four frames preceding and four
frames following). The MLP had a single hidden layer with
5000 units. The output layer consisted of 44 English phonemes
(based on UniSyn dictionary) and silence, i.e., D = 45.
The MLP has been trained on 232 hours of conversational
telephone speech with the QuickNet tool [33] by minimizing
the frame-level cross entropy. This MLP was originally trained
for template-based speech recognition [25], and has been later
used in the speech intelligibility prediction studies reported
in [15], [20].

AFbinary space consists of 18 binary valued AFs, namely,
{pause,consonantal,back,anterior,open,close,
nasal,stop,continuant,lateral,flap,trill,
voice,strident,labial,dental,velar,vocalic}.
In the Phonet toolkit1 [28], these AFs are modeled by 18
off-the-shelf recurrent neural network (RNN) based binary
classifiers, i.e. D = 18 × 2. The RNNs takes as input
log-energies of 33-dimensional Mel filterbank energies. The
RNN classifiers have been trained on 17 hours of clean
FM podcasts Mexican Spanish with a cost function based
on cross entropy. For more details, related to the mapping
between Spanish phones and the AFs and training of RNNs,
the reader is referred to [28].

AFmulti−manner space consists of nine
”manner of articulation” category AFs, namely,
{silence, aspirated, approximant,fricative,
nasal, voiced-fricative, voiced-stop, stop,
vowel}. These AFs were modeled by an off-the-shelf
convolution neural network (CNN) that takes raw waveform
as input and predicts the posterior probabilities of the nine
manner of articulation category AFs, i.e. D = 9. The CNN
has been trained on the 77 hour AMI corpus [34] with a cost
function based on cross entropy. The mapping between the
English phones and the AFs was based on a previous work
on automatic speech recognition [35]. For further details
about the architecture and training of the CNN, the reader is
referred to [29].

B. Synthetic references from Tacotron2

We used an off-the-shelf neural TTS system Tacotron2 [30]
to obtain synthetic references. The synthesizer has been orig-
inally trained on the LJSpeech corpus2, which is an annotated
English corpus including 13,100 short audio clips of a single
speaker reading passages from 7 non-fiction books. The system
has been rated with a mean opinion score of 4.526 ± 0.066

1https://github.com/jcvasquezc/phonet
2https://keithito.com/LJ-Speech-Dataset/

on scale of 1 to 5. During synthesis, each word from the
UA-Speech word-list was converted into a phoneme sequence
based on CMUDict3. For more information about the TTS
system, the reader is referred to [30].

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict


