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ABSTRACT

Speech is a common physiological signal that can be affected
by both ageing and cognitive decline. Often the effect can be con-
founding, as would be the case for people at, e.g., very early stages
of cognitive decline due to dementia. Despite this, the automatic
predictions of age and cognitive decline based on cues found in the
speech signal are generally treated as two separate tasks. In this
paper, multi-task learning is applied for the joint estimation of age
and the Mini-Mental Status Evaluation criteria (MMSE) commonly
used to assess cognitive decline. To explore the relationship be-
tween age and MMSE, two neural network architectures are eval-
uated: a SincNet-based end-to-end architecture, and a system com-
prising of a feature extractor followed by a shallow neural network.
Both are trained with single-task or multi-task targets. To compare,
an SVM-based regressor is trained in a single-task setup. i-vector, x-
vector and ComParE features are explored. Results are obtained on
systems trained on the DementiaBank dataset and tested on an in-
house dataset as well as the ADReSS dataset. The results show that
both the age and MMSE estimation is improved by applying multi-
task learning, with state-of-the-art results achieved on the ADReSS
dataset acoustic-only task.
Index Terms: Multi-task learning, age estimation, cognitive decline
estimation, SincNet, x-vector

1. INTRODUCTION

Home healthcare is becoming increasingly important in the post
Covid-19 world and takes different forms ranging from conven-
tional telehealth contact centers to autonomous home assistants
based on spoken dialog systems. Spoken language can be used in
home healthcare as one of the health sensing modalities, for ex-
ample, for cognitive [1], mental, and respiratory conditions [2]. In
a long care relationship, it is possible to collect longitudinal data,
possibly over tens of years. In this process, the properties of speech
of an individual may change over time due to ageing but changes
may also occur as a consequence of an illness, like cognitive decline.

With ageing, the subsystems which make up the human speech
production system undergo progressive physiological change af-
fected by the decreasing rate and strength of muscle contraction [3],
resulting in acoustic changes. Automatic age estimation can be
regarded as either a regression (ageing is a continuous progress)
or a classification task (consider each specific age or age-range
as a class). For classification, the earlier studies were based on
Perceptual Linear Prediction (PLP) and Mel-Frequency Cepstral

Coefficients (MFCC) [4] as the input of SVM for the classification
procedure. A Gaussian mixture model (GMM) based method was
proposed for learning the age-specific information followed by an
SVM for classification or regression [5]. The efficiency of F 0 and
formants, as well as the prosodic features has been demonstrated
effective for the age estimation [6]. State-of-the-art approaches
involve popular speaker embeddings like the i-vector [7] or x-
vector [8] as the front-end features followed by a regression stage,
like SVM based regression [9] or a shallow Neural Network [10–12]
based regression. The result reported in [11] is 7.60 and 8.63 root
mean square deviation (RMSE) for male and female respectively, as
well as 4.92 mean average error (MAE) on SRE10 [10].

Cognitive decline, associated with early signs of many neurode-
generative disorders, is caused by slow progressive loss of neurons
in the central nervous system and can lead to an irreversible selec-
tive loss of brain functions [13], resulting in speech changes even
decades before diagnosis. For automatic methods for acoustic-based
cognitive decline detection, the performance of the typical pipeline
system for cognitive decline depends on both the front-end acous-
tic feature and back-end detection stage. It has been found that in
addition to paralinguistic acoustic feature sets [13], x-vector and i-
vector are also efficient for pathological speech detection [14, 15].
In addition, inspired by the outstanding performance of deep neural
networks used in numerous speech-based research areas, [16] pro-
posed using a deep neural network for task-specific feature extractor
learning and achieved superior performance.

The changes by ageing and cognitive decline exist on speech re-
sult from two independent processes but are highly correlated. [17]
demonstrated that utilizing information such as age and educa-
tion can improve the estimation of mini-mental status examination
(MMSE), a commonly used set of questions for screening cognitive
function. In addition, the previous research demonstrated that the
acoustic features (e.g. speaking duration, F 0, x-vector) can be
utilized for diagnosing pathological speech and estimating age are
similar. For example, [18] proposed that speech measures linked to
Alzheimer’s Disease (AD) are also associated with normal ageing.

Multi-task learning (MTL) has led to successes in many appli-
cations of machine learning, from natural language processing and
speech recognition to computer vision and drug discovery [19]. The
approach uses the correlation between related tasks to improve the
performance of the system by learning the tasks in parallel. To
achieve the benefits of addressing two individual tasks within one
system, this paper addresses a novel problem of the simultaneous
estimation of more than one longitudinal change in speech proper-



ties utilizing multi-task learning.
The contribution of the paper can be summarized as follows:

(1). The results demonstrate that both an end-to-end based multi-
task learning system and a pipeline based multi-task learning sys-
tem are effective for estimating age and MMSE. (2). The analy-
sis of the SincNet filters learned in the end-to-end system demon-
strates the different information learned by the two single tasks and
the multi-task system. (3). The multi-task pipeline system on the
Interspeech 2020 Alzheimer’s Dementia Recognition through Spon-
taneous Speech (ADReSS) [20] dataset achieved state-of-the-art re-
sults with acoustic-only features.

In the remainder of this paper, Section 2 presents the back-
ground. Section 3 introduces the experimental setup and the results
are described in Section 4. Finally, the conclusions are given in
Section 5.

2. BACKGROUND

To get an initial understanding of the acoustic changes caused by
age and cognitive decline, a statistic analysis is carried out on the
used datasets: the Trinity College Dublin Speaker Ageing (TCDSA)
dataset [21], DementiaBank [22] and in-house collected dataset
named Intelligent Virtual Agent (IVA), more details can be found
in Section 3.3. Although this collective dataset contains different
accents, recording environments and speech content, it can still pro-
vide some intuition for the correlations observed between the effect
of age and MMSE on acoustic features.

First, the influence of age on the typical acoustic features is an-
alyzed for people with or without cognitive decline. The features
are extracted automatically using an open-source myspsolution.praat
toolkit [23]. As shown in Figure 1, F0 median and speaking dura-
tion from people living with or without cognitive decline seems to
have a weak inverse correlation trend when ageing in our data.

Fig. 1. The correlation between age and acoustic features (left:
F0 median, right: speaking duration) with different cognitive status.

The relationship between age and MMSE is also explored by
calculating the Euclidean distance between the x-vector of people
diagnosed with different MMSE and healthy controls. To get the an-
chor (i.e., average) x-vector representing the healthy controls, only
the x-vectors from the people in the TCDSA dataset not known to
have any cognitive health issues are used for calculating the aver-
age representation. We hypothesise that the distance between the
anchor x-vector and x-vectors averaged across speakers with a par-
ticular MMSE value is larger for lower MMSE values (indicating
more severe cognitive decline cases).

In Figure 2(a), the plotted distance for each MMSE is found by
averaging the distance between the anchor x-vector and the x-vectors
of speakers with the corresponding MMSE. However, the values in
Figure 2(a) has not taken the age into consideration. To analyse any
correlation between age and MMSE values, multiple age-specific an-
chor x-vectors are calculated by averaging the x-vectors from people
with the same age. The anchor x-vector corresponding to any miss-
ing age values is estimated by averaging the x-vectors of its neigh-
bour ages. The average distance of the x-vectors for each MMSE
value and healthy anchor age-specific x-vector is shown in Figure
2(b). By comparison, it is found that the relationship (Pearson’s cor-
relation) between healthy and people living with cognitive decline
becomes stronger after taking age into consideration (increased from
0.0173 to 0.2707).

(a) age un-specific (b) age specific

Fig. 2. The Euclidean distance between the anchor x-vectors and
x-vectors extracted from people with different MMSE values.

The relationship between the change caused by age and MMSE
on speech encourages us to explore how their estimation might be
improved by training a joint, single system, like a multi-task system.
The mainstream architectures for age and MMSE estimation are
pipeline and end-to-end systems. For the pipeline system, speaker
embeddings like x-vector or i-vectors have achieved excellent per-
formances for both age or MMSE estimation. On the other hand,
the efficiency and interpretability of an end-to-end system named
Sinc-CLA for neurodegenerative related disorder classification has
been demostrated in [16]. In this paper, both of the two mainstream
structures are demonstrated to be efficient for multi-task learning.

3. EXPERIMENTAL SETUP

3.1. End-to-end System

Previous studies [16] have shown that Sinc-CLA architecture has
a good performance and interpretability in classifying recordings
from people living with mild cognitive impairment, neurodegenera-
tive disorders, or healthy controls. The multi-task Sinc-CLA system
introduced in this paper is shown in Figure 3. The SincNet Layer
and CNN layers are shared by the two tasks, but the bi-directional
LSTM and its following layers are separately trained with a specific
target (age or MMSE). The detailed description of each functional
layers can be found in Section 3.4 of this paper and in [16].

3.2. Pipeline System

For constructing the pipeline system, the x-vector or i-vector speaker
embeddings were adopted as the front-end features for age and
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Fig. 3. The structure of the multi-task Sinc-CLA system for age and
MMSE estimation.

MMSE estimation. To make use of the age information in the esti-
mation of MMSE and likewise using the cognitive status to improve
the age estimation, a multi-task shallow neural network comprised
of two shared fully connected layers and one separated output layer
were designed for the front-end feature regression.

3.3. Datasets

The target of our experiment is to estimate the age and MMSE for
the IVA dataset with a system trained on the public available Demen-
tiaBank dataset. The IVA dataset was collected at the University of
Sheffield’s Department of Neurology at the Royal Hallamshire Hos-
pital in the UK in a real clinical setting [1]. A Digital Doctor (or
Intelligent Virtual Agent (IVA)) presented on a laptop asks a series
of conversational questions and administers a series of verbal tests
designed to mimic a neurologist-patient conversation. In our exper-
iment, only the audio recordings from the participants that have the
MMSE and age information are used, which consists of a total of 34
recordings aging from 45 to 80. Further information about the data
can be found in [1].

Likewise, the subset of recordings with both age and MMSE
labeled were selected from DementiaBank. After selection, 459
recordings from 286 speakers aging from 46 to 95 were left. The
459 recordings are separated into 5 folds 1 for cross-validation (CV)
application. In 5-fold CV, 4 folds were used for training, 1 fold for
validation (hyper-parameter optimization) and the recordings from
the IVA dataset are used for testing (test set). The results presented
in the paper are averaged across the 5 results obtained from testing
the test set on each of the systems corresponding to the 5 folds.

To compare, we also applied our approach on the ADReSS
dataset. To train the system, we divided the 108 speakers in the
training set into 9 folds as in [20] and the result presented is the
average across the result estimated by the 9 trained systems.

The Trinity College Dublin Speaker Ageing (TCDSA) dataset
was designed primarily to investigate the effect of the ageing-related
vocal change on speaker verification [21]. The main portion of this
dataset contains speech recordings of 26 adults (15 males and 11
females) across a time span of between 25 − 58 years per speaker.
Among the 26 speakers, three of them (Thatcher, Reagan and Neill)
were diagnosed with mental health problems in their later years and
the others are not known to have any cognitive health issues. Only
the recordings from the people without any cognitive health issues
were adopted for the analysis in Section 2. The detailed information
about the used datasets is shown in Table 1.

1Partitioning of folds available on request

Table 1. Detailed information for datasets; HC is used to represent
healthy controls, and CD is used to represent cognitive decline.

Dataset
Name

#Rec(HC vs.
CD)

#Spk (HC vs.
CD)

Age
Range

TCDSA 179 vs.71 23 vs. 3 [19, 96]
ADReSS 78 vs. 78 78 vs. 78 [50, 79]

DB 147 vs. 190 85 vs. 145 [46, 90]
IVA 5 vs. 44 5 vs. 40 [26, 87]

3.4. Evaluation Setting

The Kaldi Toolkit 2 is adopted for the x-vector and i-vector based
speaker embedding extraction. The detailed information about the
system setting can be found in [8]. To train the x-vector DNN extrac-
tor and total variability space for i-vector estimation with the Kaldi
script, the combination of SRE (SRE04, SRE06 train set and SRE08)
and SWBD (LDC2001S13, LDC2004S07, LDC98S75, LDC99S79
and LDC2002S06) is used [8]. In total, 141k acoustic recordings
were used. The trained DNN extractors and total variability space
can map each recording in DementiaBank and IVA dataset into a
512 dimension x-vector and a 600 dimension i-vector respectively.

For the Sinc-CLA system, the parameter setting of each layer is
the same as in [16], except for the loss function, which is the MAE
in the current regression system. While training, the mini-batch size
is set to 80 and the epoch is set to 100. For regression, both age
and MMSE is normalized to the [0,1] range before estimation. To
train the system, each recording is cut into multiple 2-second chunks
and assigned a label corresponding to its normalized age or MMSE
value. The predicted value for the test recording is the average of the
estimated value of all the corresponded chunks from that recording.

The single-task shallow neural network is comprised of two
fully-connected dense layers with 64 units and a 1-unit output layer.
The output layer of the multi-task shallow neural network are two
separate 1-unit dense layers for each regression task. All hidden lay-
ers use leaky-ReLU non-linearities. To train the system, rmsprop
is applied as the optimizer with a learning rate of 0.01. While train-
ing, the batch size is set to 80 and the epoch is set to 300. For the
two multi-task systems, the weight of age based MAE and MMSE
based MAE share the same weights when added together as the loss
criteria for parameter tuning.

4. RESULTS

4.1. SVM based Regression

As the baseline system, x-vector, i-vector and the ComParE statis-
tic features (6373-dimension including energy, spectral, MFCC, and
voicing related low-level descriptors (LLDs)) extracted by OpenS-
MILE are regressed with SVM for age or MMSE estimation. The
results are shown in Table 2. In our experiment, RMSE is utilized
as the criteria for comparing the performance of the baseline and
proposed approaches.

Though some previous research demonstrated that x-vector can
provide better or similar performance in various pathological re-
lated research tasks [14], our experimental results show that i-vector
achieves a better result for MMSE estimation (5.03 RMSE) com-
pared with x-vector and ComParE in Table 2.

2https://github.com/kaldi-asr/kaldi



Table 2. The results from the SVM based regression.
Target Feature type RMSE

Age ComParE 5.23
i-vector 4.99
x-vector 4.83

MMSE ComParE 5.34
i-vector 5.03
x-vector 5.36

4.2. Multi-task Learning Results

4.2.1. End-to-end system

The results of the end-to-end system trained for single-task and
multi-task targets are shown in Table 3. Both the average RMSE and
standard deviation RMSE over the 5 folds are shown in the Table.

Table 3. Result from single-task and multi-task Sinc-CLA network.
Target Task type RMSE

Age single 5.17±(0.32)
multi 5.40±(0.21)

MMSE single 4.44±(0.21)
multi 4.43±(0.14)

By comparing the results for the same task from single and
multi-task systems within Table 3, it is found that multi-task learn-
ing can improve the RMSE of the MMSE estimation from 4.44 to
4.43, but causes a small decline in the age estimation.

Fig. 4. The learned Normalized Cumulative Frequency Response
from three systems.

To illustrate the critical information for age and MMSE esti-
mation learned by the SincNet filters, the cumulative frequency re-
sponses (CFRs) of the SincNet from the three systems are plotted in
Figure 4. Lines in the same colour correspond to the same regres-
sion task trained for the 5-fold CV. The black line is the initialized
Mel bank CFRs. By comparing with the Mel bank CFRs, it is found
the different fold-specific CFRs appear to be less variable for the
multi-task regression than for the single task system.Considering the

results shown in Table 3, MMSE estimation is improved at a cost
of a small decrease of age estimation, how to balance the multi-task
learning to improve each single task at the same time should be con-
sidered in the future.

4.2.2. Pipeline System

The results from the single-task and multi-task neural network based
systems are shown in Table 4. By comparing the results from x-
vectors, it is found that both the age and MMSE estimation can be
improved from 4.89 to 4.64 (age) and from 4.50 to 4.35 (MMSE)
when utilizing multi-task learning. By comparing with the results
in Table 3 and Table 2, it is found that x-vector based multi-task
learning can achieve the best performance. In addition, the result of
i-vectors is consistent with our expectation that multi-task learning
performs better than single-task learning, though not as well as the
result from SVM based regression in Table 2. Comparing the per-
formance of x-vector and i-vector under the same evaluation setting
proves the efficiency of x-vector with the shallow neural network.

Table 4. The results with speaker embedding features on single-
task/multi-task pipeline system estimation.

Target Task type RMSE
(x-vector)

RMSE
(i-vector)

Age single 4.89±(0.08) 5.88±(0.39)
multi 4.64±(0.11) 5.47±(0.29)

MMSE single 4.50±(0.09) 8.32±(0.42)
multi 4.35±(0.22) 7.25±(0.37)

4.2.3. Results on ADReSS

Next, proposed x-vector based shallow neural network was used to
the ADReSS dataset MMSE estimation task. Similar to the previous
results, multi-task learning can improve the estimation of age and
MMSE: the RMSE values obtained on MMSE estimation is 5.85
with multi-task learning, compared with the baseline 6.14 shared
in [24] and 5.92 in [25] (acoustic features only).

5. CONCLUSIONS

This paper presented a multi-task method by utilizing both the end-
to-end system and shallow neural network based pipeline system
for estimating the MMSE and age for the people living with or
without cognitive decline. The result from the in-house IVA dataset
demonstrated that applying multi-task learning techniques using
x-vectors and a Sinc-CLA architecture can achieve better results
than the single-task architecture and SVR based pipeline systems.
Furthermore, we also demonstrated the efficiency of x-vector based
shallow neural network on the ADReSS dataset, which achieved a
state-of-the-art result using acoustic features only.
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